Weldability

Weldability test results

Weld rod : Equivalent to JIS DF3B-B Weld rod diameter : ϕ 3.2

If the number of overlay layers exceeds 3-4, an under-layer of austenitic stainless steel must be deposited.

After-heating : 400°C

Phy	vsical	nror	perties
	Julua		

	Quenching : 950°C × 1 h, Gas cooling Tempering : 180°C × 1 h, Twice Hardness : 60HRC								
1	 Thermal expansion rate 								
	Temp.	20~ 100°C	20~ 200°C	20~ 300°C	20~ 400°C	20~ 500°C	20~ 600°C		

Temp. 20/ ×10⁻⁶/K 12.4 13.4 14.3 14.7 12.1 13.1

Thermal conductivity

Temp.	25℃	100℃	200°C	300℃	400℃	500℃	600℃	
W∕m∙K	16.0	17.1	18.0	19.8	21.7	22.4	24.5	
* Accuracy of repeated measurements is about ± 1.006								

Specific heat

201GPa

Temp.	25°C	100°C	200°C	300°C	400℃	500°C	600℃
J/kg∙K	450	456	474	524	587	636	740

0.32

Young's modulus / Rigidity modulus / Poisson's ratio (25°C) Young's Rigidity Poisson's modulus modulus ratio

76GPa

Tokyo Head Office (Tool Steel Overseas Marketing & Sales Dept.)	Daido Shinagawa Building, 6-35, 1-Chome, Konan, Minato-ku, Tokyo, Japan Phone: +81-3-5495-1270 Fax: +81-3-5495-6739
Bangkok Office	Unit2-1, 22nd Fl., Silom Complex Bldg., 191, Silom Road, Silom,Bangrak, Bangkok 10500, Thailand Phone: +66-2-231-3214 Fax: +66-2-231-3216
Daido Steel Group Europe GmbH	Insterburger Strasse 16, 60487 Frankfurt am Main, Germany Phone: +49-69-29802867-0 Fax: +49-69-29802867-40
Daido Steel (America) Inc.	1051 Perimeter Drive, Suite 1175, Schaumburg, Illinois 60173, U.S.A. Phone: +1-847-517-7950 Fax: +1-847-517-7951
Daido Steel (Shanghai) Co.,Ltd	Room 1402, Ruijin Building, 205 Mao Ming Nan Road, Shanghai, 200020, China Phone: +86-21-5466-2020 Fax: +86-21-5466-0279
Daida Ctaal (Chanabai) Ca. 1td	Deem 2001 No. 9 Linharbour Deed Tienha District Overscheut 510010 China

DAIDO STEFI

Daido Steel (Shanghai)Co.,Ltd Room 2601, No.8, Linhezhoug Road, Tianhe District, Guangzhou, 510610, China Phone: +86-20-3877-1632 Fax: +86-20-8550-1126 Guangzhou Subsidiary Company

www.daido.co.jp

GO5 is a Registered trademark or Trademark of Daido Steel Co., Ltd.

Document Disclaimer

The product characteristics included in this brochure are the representative values based on the result of our measurements, and do not guarantee the performance in use of the products.

Please inquire the latest information to our department in charge as the information of this brochure is updated without previous notice as needed. Copyright © 2018 Daido Steel Co., Ltd. All rights reserved.

Daido's Cold Work Die Steel Series

Reducing Mold-Making Processes and Costs with Cold Work Tool Steel Featuring **Outstanding Flame Hardenability**

Features

Simplified Flame Hardening

This steel achieves sufficient surface hardness and depth of hardening through air cooling after flame heating. Thanks to a broad suitable quenching temperature range, the risk of overheating and grain coarsening is minimized.

Superior Machinability

Proper spheroidizing annealing ensures excellent machinability.

Enhanced Wear Resistance

Achieving higher uniform hardness, it offers wear resistance on par with SKS type die steel.

Reduced Risk of Cracking and Chipping under Use Its toughness surpasses that of molds made from SKS and SKD steel.

Facilitated Die Repair Through Overlav Welding

Designed with weldability in mind, the alloy composition greatly reduces the risk of cracking during overlay welding, making repairs easier and more reliable.

Main applications

Punching dies, drawing dies, bending dies

Chemical composition

Cr-Mo-V series steel

Other cold forming dies

Heat treatment

In case of flame hardening (mainly applied to the case of cutting edges)

1	Work environment	The room must be at a constant brightness level.
2	Pre-heating	200-300°C (Hardening hardness may decrease if the temperature is too high)
З	Austenitizing	Heat until it becomes bright red (950°C target) and move the heating area sequentially (see the figure below).
4	Cooling method	Air cooling
5	Tempering	Tempering at 150-200°C improves toughness

The standard of burner and gas pressure

Burner type	Nozzle number Oxygen gas pressure (O ₂)		Acetylene gas pressure (C_2H_4)	
Welding burner	#100~300	0.098MPa	0.017MPa	
Thermal cutting burner	#1 ~ 2	0.490MPa	0.049MPa	

The method of flame hardening

In case of total quenching (mainly applicable to bending dies and drawing dies)

Heat treatment Hardness		Transformation temp.			
Quenching	Tempering	Haruness	Acı	Асз	Ms
900~950°C Oil quenching	150~200°C Air cooling	≧60HRC	752°C	3°808	188℃

Hardenability (End-quench test)

Tempering chart

Toughness

Quenched hardness

Hardness distribution (After flame hardening)

